Опубликован марта 19 2012 автором adm

Кроме выбора границ визуализации часто используются дополнительные

Кроме выбора границ визуализации часто используются дополнительные алгоритмы нелинейного преобразования яркостей в полутона серого. Они позволяют более подробно отображать на снимке нужные врачу анатомические области (мягкие ткани легких, кости, брюшную полость и т. д.). Например, в случае флюорограммы график распределения частоты яркостей грубо можно разделить на три интервала: область, отвечающая костным тканям, область плотных мышечных тканей и область мягких легочных тканей. Задача математического алгоритма, обеспечивающего отображение легочной ткани с максимальным контрастом, сводится к «сжатиюпервых двух областей и «растяжениютретьей. Проблему отображения зарегистрированных яркостей ограниченным количеством уровней серого можно обойти, если использовать для этого не монохромную гамму, а весь цветовой спектр. Современные компьютерные мониторы способны выводить до 2 =4294967296, что заведомо больше динамического диапазона используемых в медицинских аппаратах АЦП. К тому же человеческих глаз значительно лучше различает переходы от одного цвета к другому, нежели полутона серого цвета.

Однако на пути практической реализации этой идеи возникают две проблемы. Во-первых, необходимо подобрать естественную для человеческого восприятия цветовую гамму, которая бы описывала весь зарегистрированный интервал яркостей. И, во-вторых, это потребует создания новой школы анализа снимков для практикующих рентгенологов, которые привыкли иметь дело именно с серой гаммой. В заключении хотелось бы отметить, что, конечно, математические алгоритмы используются не только для решения задач отображения снимков на экране компьютера.

Большинство программ оснащено дополнительными средствами, позволяющими целенаправленно изменять исходное изображение в соответствии с выбранной стратегией: уменьшать шумы, устранять глобальные неоднородности, связанные с работой аппаратуры, увеличивать резкость изображения, выделять границы резких переходов яркостей и т. д. Очень интересными и многообещающими, по мнению авторов, является применение таких мощных и новейших методов обработки, как фильтрация изображений на основе непрерывной вейвлет-трансформации (для эффективного подавления шумов), кластерный анализ (для выделения определенных структур), методы био-коррекции (алгоритмы, свойственные органам живых существ). Список литературы: Гуржиев А. Н., Гуржиев С. Н., Кострицкий А. В. Практические аспекты эксплуатации малодозового цифрового флюорографа ПроСкан-2000®.// Медицинский Бизнес № 9-10 (99-100) 2002г.

Основы рентгенодиагностической техники// Под редакцией Н. Н. Блинова, Москва, 2002, «Медицина». И. Б. Белова, В. М. Китаев. Малодозовая цифровая рентгенография в профилактических обследованиях населения// Радиология-практика, 2001, №2, с. 22-26.

Комментирование приостановлено.